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Abstract: 2’,3’-Dideoxy-B-L-cytidine (p-L-ddC), a potent inhibitor against 

human hepatitis B virus (HBV) and human immunodeficiency virus (HIV), has been 

stexwsjwifically synthesized from Garabinose in 9 steps. 

Recently, 2’,3’dideoxy-~D-cytidiie (ddC) has been shown to be a potent inhibitor of the replication of 

both human imtnunodeficiency virus (HIV)I and human hepatitis B virus (HBV)23 in vitro. However, long- 

term usage of ddC causes delayed toxicity such as peripheral neuropathy in patients, which was suggested to 

be as a result of the depletion of mitochondrial DNA (mt DNA) in cells treated with ddC.4 L-Nucleosides, 

the enantiomers of natural D-nucleosides, were believed not to be recognized by normal cellular enzymes 

and, therefore, are not or very poorly metabolized in the host animals.5 However, it was found that 

L-ribonucleoside S-diphosphates interacted with bacterial polynucleotide phosphorylase and nucleolytic 

enzymes.67 Recently, Spadari et al.8 reported that L-thymidine is not recognized by human thymidine k&se, 

but functions as specific substrates for the herpes simplex virus type 1 (HSV-1) viral enzyme and demonstrates 

anti-HSV-1 activity in HeLa cells. Based on these findings, various 2.3’~dideoxy-L-nucleoside analogues 

were synthesized and evaluated as potential anti-HIV and anti-HBV agents in our laboratory. Among these 

compounds, 2’,3’-dideoxy-P-L-cytidine (1, p-L-ddc) was found to be 280 times more potent than 2’,3’- 

dideoxy-~D-cytidine against HBV, with respective ED50 values of 0.01 and 2.8 PM, and negligible inhibition 

to the host mitochondrial DNA synthesis.o,lu 

Since the coupling reaction of l-O-acetyl-5-O-(tert-butyldimethylsilyl)-2,3di~oxy-L-~~f~o~ and 

silylated cytosine,g- 1 I a key step in the synthesis of P_LddC, produced a mixture of a and p anomers, thereby 

reducing the yield of the desired B-anomer which was further diminished when isolated by repeated 

chromatography on a silica gel column, an efficient methodology for the synthesis of p-LddC was highly 

desirable. In this report, a stereospecific approach for the synthesis of B-L&C is described (Scheme I). 
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2.2’-Anhydro-P-L-&dine (4). which has been previously reported by Holy12 was selected as a logical 

precursor for the synthesis of &~ddC. Treatment of L-ambinose (2) with cyanamide in aqueous methauolic 

ammonia gave 2’-amino- 1,2-oxazoline (3). which upon reaction with methylpropiolate afforded the anhydro 

derivative 4.t* Reaction of compound 4 with fe~~u~~y~yl chloride iu shyer pyridine at room 

temperature for 3 days resulted in the regioselective formation of derivative 5. However, when the reaction 

was allowed to proceed under mflux for an additional 2 h, the 2’-chloro derivative 6 was produced in 86% 

yield, via a back-side nucleophilic attack on the 2’position of compound 5 by the chloride ion formed during 

the silylation reaction. Treatment of compound 6 l3 with phenyl chlorothionocarbonate and 

4-dimethylaminopyridine in acetoni,trile under nitrogen at room temperatute yielded the 2’-chloro-3’-0- 

phenoxythiocarbonyl derivative 7. Reduction of compound 7 with tri-n-butyltin hydride and 

azobisisobutyronitrile (AIBN) in dry toluene at 110 *C gave the 2’,3’-unsaturated nucleoside 8.14 which upon 

reduction under 50 psi of hydrogen in the presence of 10% p~l~urn on powdered carbon afforded 

S’-protected 2’,3’-dideoxy &dine derivative 9. 1s Treatment of compound 9 with 4-chlorophenyl 

phosphorodichloridate and 1.2.4~triazole in anhydrous pyridine at room temperature yielded the 

4-uiazolylpyrimidinone derivative 10. Subsequent treatment of compound 10 with a mixture of ammonium 

hydroxide/dioxane (2:1, v/v) gave the S-protected 2’,3’-dideoxy cytidine derivative 11,16 which was then 

deblocked by reaction with tetra-rr-butylammonium fluoride in THF to afford the target compound 

2’,3’-dideoxy-P-Lcytidine (1, B-LddC).17 
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Compound 6: as a foam; ‘H NMR (CDCl3) 6 0.15 (s. 6 H, SiMez), 0.95 (s, 9 H, SiCMeg), 3.03- 

3.15 (br S, 1 H, 3’-OH. D20 exchangeable), 3.90-4.00 (d, 2 H. S-H), 4.15-4.25 (m, 1 H, 4’-H), 

4.30-4.40 (m, 2 H, 2’-H and 3’-H), 5.70 (d, 1 H, 5-H), 6.15-6.20 (m, 1 H, II-H), 7.90 (d, 1 H, 

6-H), 9.50 (br s, 1 H, 3-NH, a0 exchangeable). 

Compound 8: yield: 62% as a foam; lH NMR (CDCl3) 6 0.10 (s, 6 H, SiMes), 0.95 (s, 9 H, 

SiCMeg), 3.90- 3.95 (d, 2 H, 5’-H), 4.90-5.00 (m, 1 H, 4’-H), 5.70 (d, 1 H, 5-H). 5.80-5.90 

(d, 1 H, 2’-H), 6.25-6.36 (d, 1 H, 3’-H), 7.05-7.10 (m. 1 H, II-H), 7.80 (d, 1 H, 6-H), 9.55 (br s, 

1 H, 3-NH, QO exchangeable). 

Compound 9: yield: 91% as a white foam; TLC, Rf 0.50 (CH$lfitOAc, l:l, v/v); 1H NMR 

(CDC13) 6 0.08 [s, 6 H, Si(CH3)2J, 0.95 [s, 9 H, SiC(CH3)3], 1.90-2.22 (m. 4 H, 2’-H and 3’-H), 

3.70 (m, 1 H, Y-HA), 4.07 (m, 1 H, 5’-HB), 4.10 (m, 1 H, 4’-H), 5.65 (d, 1 H, 5-H), 6.10 (m, 1 H, 

l’-H), 8.05 (d, 1 H, 6-H), 9.45 (br s, 1 H, 3-NH. D20 exchangeable). 

Compound 11: yield: 52% (based on compound 9) as a white foam; 1I-I NMR (CDC13) 6 0.10 

[s, 6 H, Si(CH3)2], 0.90 [s, 9 H, SiC(CH3)3], 1.80-2.60 (m, 4 H, 2’-H and 3’-H), 3.60-4.00 (m, 

2 H, 5’-H), 4.05-4.15 (m, 1 H, 4’-H), 5.65 (d, 1 H, 5-H), 6.05 (m, 1 H, I’-H), 7.70-8.00 (br s, 

1 H, 4-NH2. D20 exchangeable), 8.05 (d, 1 H, 4-H). 

Compound 1: yield: 80% as white solid; mp 194-196 ‘C, TLC, Rf0.23 (EtOAciEtOH. 2: 1, v/v); [U]D 

-90.3” (C = 0.14, MeOH); UV (MeOH) hax 270 nm (e 6979), hmin 248 nm; UV (0.01 N HCI) hmax 

282 nm (e 11965). X,,,h 242 nm; UV (0.01 N NaOH) h max 273 nm (E 8340), &in 250 nm; 1H NMR 

(MezSO-de) 6 1.74-2.24 (m, 4 H, 2’-H and 3’-H), 3.49-3.65 (m, 2 H, 5’-H), 3.98-4.04 (m, 1 H, 

4’-H), 4.96-5.00 (t. 1 H, 5’-OH, D20 exchangeable), 5.67 (d, 1 H, 5-H. J = 7.4 Hz). 5.91 (m, 1 H, 

l’-H), 7.01-7.06 (br s, 2 H, 4-NH2, D20 exchangeable), 7.87-7.90 (d, 1 H, 6-H, J = 7.4 Hz). 
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